中学受験算数の数の性質の問題を解説していきましょう。
数の性質の第5回目です。
今回は公約数・最大公約数の簡単な求め方について見ていきます。
※ただ単に公約数・最大公約数がいくつになるかを知りたい方は「公約数・最大公約数の自動計算ツール」をご利用ください。
概要
公約数・最大公約数を求めるために必要な知識
公約数・最大公約数の意味と求め方を学ぶ前に、まずは「約数」の理解が必要不可欠です。
約数についての基礎があやふやな場合は、まずは下記の記事をご覧下さい。
約数の意味にプラスして、公約数・最大公約数の意味と地道な求め方も身につけましょう。その方が公約数・最大公約数に対する理解が深まります。前回の記事に書いてますので、まだ身についていないという方は「公約数・最大公約数の意味と地道な求め方」をご覧下さい。
公約数・最大公約数の簡単な求め方
問題を通して公約数・最大公約数の簡単な求め方を身につけましょう。
問題
168と192の公約数を全て求めなさい。
また最大公約数を答えなさい。
回答
2)168 192
4) 84 96
3) 21 24
7 8
最大公約数:2×4×3=24
24=1×24
=2×12
=3×8
=4×6
公約数:1,2,3,4,6,8,12,24
解説
前回の公約数・最大公約数の意味と地道な求め方では、最初に公約数を出してその後に最大公約数を求めました。
しかし今回は、先に最大公約数を求めて、その後に公約数を求めるという順番になります。
まずは最大公約数を求める
最大公約数から公約数を求める
公約数は、最大公約数の約数
24=1×24
=2×12
=3×8
=4×6
だから、168と192の公約数は1、2、3、4、6、8、12、24になるってこと?
※このサイトは基礎に重点をおいて算数の解説をしています。今回の解法の理屈は難しい為、基礎段階では理解するのに時間がかかります。それに加え、理解できなくても基礎段階の問題を解くのに影響はありません。勉強の効率を考え、ムリに理解するよりまずは丸暗記しましょう。(いつかその内、理屈も書くつもりです)
まとめ
上記の解き方(割り算の逆みたいな形)を使うと最大公約数が簡単に出せる。
公約数は最大公約数の約数である。
コメント
すごくタメになりました!
ありがとうございます。(*⁰▿⁰*)
コメントありがとうございます。
記事を書く励みになります!
ありがと
コメントありがとうございます!
満80歳の老人です。このコロナ化の影響で,小学5年生の孫に種々の科目を教えています。
特に,算数を教えていますが,倍数,公倍数,最小公倍数,約数,公約数,最大公約数の応用問題で最小公倍数で解くのか最大公約数で解くのか良く理解しておりません(私自身)。どうすればよいでしょうか?
コメントありがとうございます!
どれを使って解けばいいのかというのは中々難しいのですが、
その問題において最小公倍数は何を表しているのか、最大公約数は何を表しているのか
を意識することが大事だと思っています。
有難うございます。種々の問題は解けますが,どうしてそれを使うのかが十分把握しておりません。もうすこし勉強します。
分かりやすかったです。助かりました。ありがとうございます!!
お役に立てて何よりです!
わかりやすくて、すぐ理解できたし、復習にも使えて思い出せたのでありがたいです。
こちらこそコメントありがとうございます!
ためになりました
理屈もつけてくれると嬉しいです
コメントありがとうございます。
気が向いたら理屈も書きます!